Communication2009. 1. 30. 21:29
Characterization

There are various ways to characterize a probability distribution. The most visual is the probability density function (PDF). Equivalent ways are the cumulative distribution function, the moments, the cumulants, the characteristic function, the moment-generating function, the cumulant-generating function, and Maxwell's theorem. See probability distribution for a discussion.

To indicate that a real-valued random variable X is normally distributed with mean μ and variance σ² ≥ 0, we write

X \sim N(\mu, \sigma^2).\,\!

While it is certainly useful for certain limit theorems (e.g. asymptotic normality of estimators) and for the theory of Gaussian processes to consider the probability distribution concentrated at μ (see Dirac measure) as a normal distribution with mean μ and variance σ² = 0, this degenerate case is often excluded from the considerations because no density with respect to the Lebesgue measure exists.

The normal distribution may also be parameterized using a precision parameter τ, defined as the reciprocal of σ². This parameterization has an advantage in numerical applications where σ² is very close to zero and is more convenient to work with in analysis as τ is a natural parameter of the normal distribution.

The continuous probability density function of the normal distribution is the Gaussian function

\varphi_{\mu,\sigma^2}(x) = \frac{1}{\sigma\sqrt{2\pi}} \,e^{ -\frac{(x- \mu)^2}{2\sigma^2}} = \frac{1}{\sigma} \varphi\left(\frac{x - \mu}{\sigma}\right),\quad x\in\mathbb{R},

where σ > 0 is the standard deviation, the real parameter μ is the expected value, and

\varphi(x)=\varphi_{0,1}(x)=\frac{e^{-x^2/2}}{\sqrt{2\pi\,}}, \,\quad x\in\mathbb{R},

is the density function of the "standard" normal distribution: i.e., the normal distribution with μ = 0 and σ = 1. The integral of \varphi_{\mu,\sigma^2} over the real line is equal to one as shown in the Gaussian integral article.

As a Gaussian function with the denominator of the exponent equal to 2, the standard normal density function \varphi_{} is an eigenfunction of the Fourier transform.

The probability density function has notable properties including:

  • symmetry about its mean μ
  • the mode and median both equal the mean μ
  • the inflection points of the curve occur one standard deviation away from the mean, i.e. at μσ and μ + σ.

Reference : http://en.wikipedia.org/wiki/Normal_distribution
Posted by HolyThink